Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Parasite ; 29: 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083036

RESUMO

Schistosomiasis is a debilitating parasitic disease caused by intravascular flatworms called schistosomes (blood flukes) that affects >200 million people worldwide. Proteomic analysis has revealed the surprising presence of classical glycolytic enzymes - typically cytosolic proteins - located on the extracellular surface of the parasite tegument (skin). Immunolocalization experiments show that phosphoglycerate mutase (PGM) is widely expressed in parasite tissues and is highly expressed in the tegument. We demonstrate that live Schistosoma mansoni parasites express enzymatically active PGM on their tegumental surface. Suppression of PGM using RNA interference (RNAi) diminishes S. mansoni PGM (SmPGM) gene expression, protein levels, and surface enzyme activity. Sequence comparisons place SmPGM in the cofactor (2,3-bisphosphoglycerate)-dependent PGM (dPGM) family. We have produced recombinant SmPGM (rSmPGM) in an enzymatically active form in Escherichia coli. The Michaelis-Menten constant (Km) of rSmPGM for its glycolytic substrate (3-phosphoglycerate) is 0.85 mM ± 0.02. rSmPGM activity is inhibited by the dPGM-specific inhibitor vanadate. Here, we show that rSmPGM not only binds to plasminogen but also promotes its conversion to an active form (plasmin) in vitro. This supports the hypothesis that host-interactive tegumental proteins (such as SmPGM), by enhancing plasmin formation, may help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivo.


Title: La phosphoglycérate mutase de Schistosoma mansoni ­ une ectoenzyme glycolytique avec un potentiel thrombolytique. Abstract: La schistosomiase est une maladie parasitaire débilitante causée par des vers plats intravasculaires appelés schistosomes qui affecte plus de 200 millions de personnes dans le monde. L'analyse protéomique a révélé la présence surprenante d'enzymes glycolytiques classiques ­ typiquement des protéines cytosoliques ­ situées sur la surface extracellulaire du tégument du parasite. Des expériences d'immunolocalisation montrent que la phosphoglycérate mutase (PGM) est largement exprimée dans les tissus parasitaires et fortement exprimée dans le tégument. Nous démontrons que les parasites Schistosoma mansoni vivants expriment une PGM enzymatiquement active sur leur surface tégumentaire. La suppression de la PGM à l'aide de l'interférence ARN (ARNi) diminue l'expression du gène PGM de S. mansoni (SmPGM), les niveaux de protéines et l'activité enzymatique de surface. Les comparaisons de séquences placent la SmPGM dans la famille des PGM dépendantes du cofacteur (2,3-bisphosphoglycérate) (dPGM). Nous avons produit de la SmPGM recombinante (rSmPGM) sous une forme enzymatiquement active dans Escherichia coli. La constante de Michaelis-Menten (Km) de rSmPGM pour son substrat glycolytique (3-phosphoglycérate) est de 0,85 mM ± 0,02. L'activité de la rSmPGM est inhibée par le vanadate, un inhibiteur spécifique des dPGM. Ici, nous montrons que rSmPGM non seulement se lie au plasminogène mais favorise également sa conversion en une forme active (plasmine) in vitro. Cela soutient l'hypothèse selon laquelle les protéines tégumentaires interactives avec l'hôte (telles que SmPGM), en améliorant la formation de plasmine, peuvent aider à dégrader les caillots sanguins autour des vers dans le microenvironnement vasculaire et ainsi favoriser la survie du parasite in vivo.


Assuntos
Schistosoma mansoni/enzimologia , Esquistossomose , Animais , Fibrinolisina/metabolismo , Interações Hospedeiro-Parasita , Humanos , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Proteômica , Esquistossomose/parasitologia
2.
J Biol Chem ; 298(10): 102375, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970392

RESUMO

Parasitic diseases cause significant global morbidity and mortality particularly in the poorest regions of the world. Schistosomiasis, one of the most widespread neglected tropical diseases, affects more than 200 million people worldwide. Histone deacetylase (HDAC) inhibitors are prominent epigenetic drugs that are being investigated in the treatment of several diseases, including cancers and parasitic diseases. Schistosoma mansoni HDAC8 (SmHDAC8) is highly expressed in all life cycle stages of the parasite, and selective inhibition is required in order to avoid undesirable off-target effects in the host. Herein, by X-ray crystal structures of SmHDAC8-inhibitor complexes, biochemical and phenotypic studies, we found two schistosomicidal spiroindoline derivatives binding a novel site, next to Trp198, on the enzyme surface. We determined that by acting on this site, either by mutation of the Trp198 or by compound binding, a decrease in the activity of the enzyme is achieved. Remarkably, this allosteric site differs from the human counterpart; rather, it is conserved in all Schistosoma species, as well as Rhabidoptera and Trematoda classes, thus paving the way for the design of HDAC8-selective allosteric inhibitors with improved properties.


Assuntos
Anti-Helmínticos , Proteínas de Helminto , Inibidores de Histona Desacetilases , Histona Desacetilases , Schistosoma mansoni , Animais , Humanos , Sítios de Ligação , Proteínas de Helminto/química , Proteínas de Helminto/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Histona Desacetilases/genética , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Cristalografia por Raios X
3.
PLoS Pathog ; 18(1): e1009828, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025955

RESUMO

α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni's α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), which was consistent with smp_089290's female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds.


Assuntos
Proteínas de Helminto/fisiologia , Movimento/fisiologia , Oviposição/fisiologia , Schistosoma mansoni/enzimologia , alfa-N-Acetilgalactosaminidase/fisiologia , Animais , Feminino , Masculino , Camundongos , Esquistossomose mansoni
4.
Nucleic Acids Res ; 49(18): 10573-10588, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551436

RESUMO

The twister ribozyme is widely distributed over numerous organisms and is especially abundant in Schistosoma mansoni, but has no confirmed biological function. Of the 17 non-LTR retrotransposons known in S. mansoni, none have thus far been associated with ribozymes. Here we report the identification of novel twister variant (T-variant) ribozymes and their function in S. mansoni non-LTR retrotransposition. We show that T-variant ribozymes are located at the 5' end of Perere-3 non-LTR retrotransposons in the S. mansoni genome. T-variant ribozymes were demonstrated to be catalytically active in vitro. In reporter constructs, T-variants were shown to cleave in vivo, and cleavage of T-variants was sufficient for the translation of downstream reporter genes. Our analysis shows that the T-variants and Perere-3 are transcribed together. Target site duplications (TSDs); markers of target-primed reverse transcription (TPRT) and footmarks of retrotransposition, are located adjacent to the T-variant cleavage site and suggest that T-variant cleavage has taken place inS. mansoni. Sequence heterogeneity in the TSDs indicates that Perere-3 retrotransposition is not site-specific. The TSD sequences contribute to the 5' end of the terminal ribozyme helix (P1 stem). Based on these results we conclude that T-variants have a functional role in Perere-3 retrotransposition.


Assuntos
RNA Catalítico/química , Retroelementos , Schistosoma mansoni/genética , Animais , Sequência de Bases , Genoma Helmíntico , RNA Catalítico/metabolismo , Schistosoma mansoni/enzimologia
5.
Biochem J ; 478(19): 3655-3670, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529035

RESUMO

Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness - which is limited to the parasite's adult form - and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. Fourteen of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.


Assuntos
Descoberta de Drogas/métodos , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Schistosoma mansoni/enzimologia , Tiazóis/metabolismo , Animais , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Dimetil Sulfóxido/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Purina-Núcleosídeo Fosforilase/genética , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
6.
Eur J Med Chem ; 225: 113745, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34392190

RESUMO

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, we chemically optimized our previously reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by the highly potent inhibitor 5o. Structure-based optimization of the novel inhibitors was carried out using the available crystal structures as well as docking studies on smHDAC8. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs (hHDAC). The in vitro and docking results were used for detailed structure activity relationships. The synthesized compounds were further investigated for their lethality against the schistosome larval stage using a fluorescence-based assay. The most promising inhibitor 5o showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Esquistossomose/tratamento farmacológico , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HEK293 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Schistosoma mansoni/enzimologia , Relação Estrutura-Atividade
7.
J Med Chem ; 64(14): 10418-10428, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34232641

RESUMO

Tegumental carbonic anhydrase from the worm Schistosoma mansoni (SmCA) is considered a new anti-parasitic target because suppressing its expression interferes with schistosome metabolism and virulence. Here, we present the inhibition profiles of selenoureido compounds on recombinant SmCA and resolution of the first X-ray crystal structures of SmCA in adduct with a selection of such inhibitors. The key molecular features of such compounds in adduct with SmCA were obtained and compared to the human isoform hCA II, in order to understand the main structural factors responsible for enzymatic affinity and selectivity. Compounds that more specifically inhibited the schistosome versus human enzymes were identified. The results expand current knowledge in the field and pave the way for the development of more potent antiparasitic agents in the near future.


Assuntos
Derivados de Benzeno/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Compostos Organosselênicos/farmacologia , Schistosoma mansoni/enzimologia , Sulfonamidas/farmacologia , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
8.
Parasit Vectors ; 14(1): 274, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022917

RESUMO

BACKGROUND: The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host-parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. METHODOLOGY: Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. RESULTS: FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. CONCLUSIONS: The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host-parasite interactions.


Assuntos
Expressão Gênica , Proteínas de Helminto/genética , Hibridização in Situ Fluorescente/métodos , RNA/metabolismo , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Serina Proteases/genética , Animais , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente/normas , Masculino
9.
Molecules ; 26(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925246

RESUMO

Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8-inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein-inhibitor BFE, different quantitative structure-activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.


Assuntos
Proteínas de Helminto/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Relação Quantitativa Estrutura-Atividade , Schistosoma mansoni/enzimologia , Animais , Relação Dose-Resposta a Droga , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Reprodutibilidade dos Testes
10.
Biochimie ; 184: 18-25, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524435

RESUMO

The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase from Schistosoma mansoni (SmGAPDH) is characterized as a therapeutical target for schistosomiasis. In this context, we report here the experimental structure, structural analyses and comparisons of SmGAPDH, the first one from a Platyhelminth. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.51 Å resolution. SmGAPDH is the only GAPDH to present the sequence NNR (its residues 114-116) which leads to (especially R116) a hydrogen bond network that possibly reflects on the flexibility of residues to interact with the adenine part of NAD+, speculated to be important for differential drug design.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Proteínas de Helminto/química , Modelos Moleculares , Schistosoma mansoni/enzimologia , Animais , Cristalografia por Raios X
11.
Int J Biol Macromol ; 175: 406-421, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549669

RESUMO

Schistosomiasis is a neglected tropical disease that affects more than 250 million people worldwide. The only drug available for its treatment undergoes first-pass hepatic metabolism and is not capable of preventing reinfection, which makes the search of new therapies urgently needed. Due to the essential role of fumarases in metabolism, these enzymes represent potential targets for developing novel schistosomiasis treatments. Here, we evaluate the expression profiles for class I and class II fumarases from Schistosoma mansoni (SmFHI and SmFHII, respectively), and report the complete characterization of SmFHII. The first SmFHII structure in complex with L-malate was determined at 1.85 Å resolution. The significant thermoshift observed for SmFHII in the presence of identified ligands makes the differential scanning fluorimetry an adequate technique for ligand screening. A complete kinetic characterization of SmFHII was performed, and comparison with the human fumarase (HsFH) revealed differences regarding the turnover number (kcat). Structural characterization allowed us to identify differences between SmFHII and HsFH that could be explored to design new selective inhibitors. This work represents the very first step towards validate the fumarases as drug targets to treat schistosomiasis. Our results provide the structural basis to rational search for selective ligands.


Assuntos
Fumarato Hidratase/farmacologia , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/tratamento farmacológico , Animais , Feminino , Fumarato Hidratase/metabolismo , Cinética , Ligantes , Masculino , Camundongos , Schistosoma mansoni/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/metabolismo , Esquistossomose mansoni/metabolismo
12.
FASEB J ; 35(2): e21331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476078

RESUMO

Type 2 immunity plays an essential role in the maintenance of metabolic homeostasis and its disruption during obesity promotes meta-inflammation and insulin resistance. Infection with the helminth parasite Schistosoma mansoni and treatment with its soluble egg antigens (SEA) induce a type 2 immune response in metabolic organs and improve insulin sensitivity and glucose tolerance in obese mice, yet, a causal relationship remains unproven. Here, we investigated the effects and underlying mechanisms of the T2 ribonuclease omega-1 (ω1), one of the major S mansoni immunomodulatory glycoproteins, on metabolic homeostasis. We show that treatment of obese mice with plant-produced recombinant ω1, harboring similar glycan motifs as present on the native molecule, decreased body fat mass, and improved systemic insulin sensitivity and glucose tolerance in a time- and dose-dependent manner. This effect was associated with an increase in white adipose tissue (WAT) type 2 T helper cells, eosinophils, and alternatively activated macrophages, without affecting type 2 innate lymphoid cells. In contrast to SEA, the metabolic effects of ω1 were still observed in obese STAT6-deficient mice with impaired type 2 immunity, indicating that its metabolic effects are independent of the type 2 immune response. Instead, we found that ω1 inhibited food intake, without affecting locomotor activity, WAT thermogenic capacity or whole-body energy expenditure, an effect also occurring in leptin receptor-deficient obese and hyperphagic db/db mice. Altogether, we demonstrate that while the helminth glycoprotein ω1 can induce type 2 immunity, it improves whole-body metabolic homeostasis in obese mice by inhibiting food intake via a STAT6-independent mechanism.


Assuntos
Ingestão de Alimentos , Endorribonucleases/uso terapêutico , Glicoproteínas/uso terapêutico , Proteínas de Helminto/uso terapêutico , Obesidade/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Endorribonucleases/farmacologia , Glicoproteínas/farmacologia , Proteínas de Helminto/farmacologia , Locomoção , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Schistosoma mansoni/enzimologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Termogênese , /metabolismo
13.
FEBS J ; 288(3): 930-944, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32428996

RESUMO

Schistosomiasis is a serious public health problem, prevalent in tropical and subtropical areas, especially in poor communities without access to safe drinking water and adequate sanitation. Transmission has been reported in 78 countries, and its control depends on a single drug, praziquantel, which has been used over the past 30 years. Our work is focused on exploiting target-based drug discovery strategies to develop new therapeutics to treat schistosomiasis. In particular, we are interested in evaluating the enzyme dihydroorotate dehydrogenase (DHODH) as a drug target. DHODH is a flavoenzyme that catalyzes the stereospecific oxidation of (S)-dihydroorotate (DHO) to orotate during the fourth and only redox step of the de novo pyrimidine nucleotide biosynthetic pathway. Previously, we identified atovaquone, used in the treatment of malaria, and its analogues, as potent and selective inhibitors against Schistosoma mansoni DHODH (SmDHODH). In the present article, we report the first crystal structure of SmDHODH in complex with the atovaquone analogue inhibitor 2-((4-fluorophenyl)amino)-3-hydroxynaphthalene-1,4-dione (QLA). We discuss three major findings: (a) the open conformation of the active site loop and the unveiling of a novel transient druggable pocket for class 2 DHODHs; (b) the presence of a protuberant domain, only present in Schistosoma spp DHODHs, that was found to control and modulate the dynamics of the inhibitor binding site; (c) a detailed description of an unexpected binding mode for the atovaquone analogue to SmDHODH. Our findings contribute to the understanding of the catalytic mechanism performed by class 2 DHODHs and provide the molecular basis for structure-guided design of SmDHODH inhibitors. DATABASE: The structural data are available in Protein Data Bank (PDB) database under the accession code number 6UY4.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/prevenção & controle , Sequência de Aminoácidos , Animais , Atovaquona/análogos & derivados , Atovaquona/farmacologia , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/química , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Conformação Proteica , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose mansoni/parasitologia , Homologia de Sequência de Aminoácidos
14.
FASEB J ; 35(1): e21205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337558

RESUMO

CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.


Assuntos
Acetilcolinesterase/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Proteínas de Helminto/metabolismo , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/metabolismo , Acetilcolinesterase/genética , Animais , Feminino , Proteínas de Helminto/genética , Camundongos , Schistosoma mansoni/genética , Esquistossomose mansoni/genética
15.
Front Immunol ; 11: 605288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304354

RESUMO

Schistosomiasis threatens 800 million people worldwide. Chronic pathology manifests as hepatosplenomegaly, and intestinal schistosomiasis caused by Schistosoma mansoni can lead to liver fibrosis, cirrhosis, and blood in the stool. To assist the only FDA-approved drug, praziquantel, in parasite elimination, the development of a vaccine would be of high value. S. mansoni Cathepsin B (SmCB) is a well-documented vaccine target for intestinal schistosomiasis. Herein, we test the increased efficacy and immunogenicity of SmCB when combined with sulfated lactosyl archaeol (SLA) archaeosomes or AddaVax™ (a squalene based oil-in-water emulsion). Both vaccine formulations resulted in robust humoral and cell mediated immune responses. Impressively, both formulations were able to reduce parasite burden greater than 40% (WHO standard), with AddaVax™ reaching 86.8%. Additionally, SmCB with both adjuvants were able to reduce granuloma size and the amount of larval parasite hatched from feces, which would reduce transmission. Our data support SmCB as a target for S. mansoni vaccination; especially when used in an adjuvanted formulation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Arqueais/farmacologia , Catepsina B/farmacologia , Proteínas de Helminto/farmacologia , Lipídeos/farmacologia , Polissorbatos/farmacologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Esqualeno/farmacologia , Vacinas Sintéticas/farmacologia , Animais , Anticorpos/sangue , Catepsina B/imunologia , Células Cultivadas , Citocinas/metabolismo , Composição de Medicamentos , Feminino , Proteínas de Helminto/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunogenicidade da Vacina , Camundongos Endogâmicos C57BL , Contagem de Ovos de Parasitas , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Caramujos , Vacinas Sintéticas/imunologia
16.
Front Immunol ; 11: 569988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072110

RESUMO

Schistosomiasis, caused by Schistosoma mansoni trematode worm, affects more than 1.5 million people in Brazil. The current treatment consists in the administration of Praziquantel, the only medicine used for treatment for more than 40 years. Some of the limitations of this drug consist in its inactivity against schistosomula and parasite eggs, the appearance of resistant strains and non-prevention against reinfection. Thus, the objective of this study was to evaluate the effect of immunization with recombinant functional enzymes of the purine salvage pathway of S. mansoni, Nucleoside Diphosphate Kinase (NDPK) and Adenylosuccinate Lyase (ADSL), to evaluate the host immune response, as well as the parasite load after vaccination. For this, Balb/c mice were divided into 5 groups: control (uninfected and untreated), non-immunized/infected, NDPK infected, ADSL infected, and NDPK + ADSL infected. Immunized groups received three enzyme dosages, with a 15-day interval between each dose, and after 15 days of the last application the animals were infected with 80 cercariae of S. mansoni. On the 47th day after the infection, fecal eggs were counted and, on the 48th day after the infection, the evaluation of leukocyte response, parasite load, antibody production, cytokines quantification, and histopathological analysis were performed. The results showed that immunizations with NDPK, ADSL or NDPK + ADSL promoted a discreet reduction in eosinophil counts in lavage of peritoneal cavity. All immunized animals showed increased production and secretion of IgG1, IgG2a, and IgE antibodies. Increased production of IL-4 was observed in the group immunized with the combination of both enzymes (NDPK + ADSL). In addition, in all immunized groups there were reductions in egg counts in the liver and intestine, such as reductions in liver granulomas. Thus, we suggest that immunizations with these enzymes could contribute to the reduction of schistosomiasis transmission, besides being important in immunopathogenesis control of the disease.


Assuntos
Adenilossuccinato Liase/imunologia , Antígenos de Helmintos/imunologia , Núcleosídeo-Difosfato Quinase/imunologia , Schistosoma mansoni/enzimologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Animais , Antígenos de Helmintos/administração & dosagem , Biomarcadores , Citocinas/sangue , Eosinófilos , Feminino , Imunização , Esquemas de Imunização , Contagem de Leucócitos , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Camundongos , Carga Parasitária , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Esquistossomose mansoni/patologia , Esquistossomose mansoni/prevenção & controle
17.
Science ; 369(6511): 1649-1653, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973031

RESUMO

Schistosome parasites kill 250,000 people every year. Treatment of schistosomiasis relies on the drug praziquantel. Unfortunately, a scarcity of molecular tools has hindered the discovery of new drug targets. Here, we describe a large-scale RNA interference (RNAi) screen in adult Schistosoma mansoni that examined the function of 2216 genes. We identified 261 genes with phenotypes affecting neuromuscular function, tissue integrity, stem cell maintenance, and parasite survival. Leveraging these data, we prioritized compounds with activity against the parasites and uncovered a pair of protein kinases (TAO and STK25) that cooperate to maintain muscle-specific messenger RNA transcription. Loss of either of these kinases results in paralysis and worm death in a mammalian host. These studies may help expedite therapeutic development and invigorate studies of these neglected parasites.


Assuntos
Anti-Helmínticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Schistosoma mansoni/enzimologia , Esquistossomose mansoni/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico , Genes de Helmintos , Testes Genéticos , Proteínas de Helminto/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose mansoni/parasitologia , Transcrição Gênica/efeitos dos fármacos
18.
PLoS Negl Trop Dis ; 14(7): e0008447, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730343

RESUMO

Only a single drug against schistosomiasis is currently available and new drug development is urgently required but very few drug targets have been validated and characterised. However, regulatory systems including cyclic nucleotide metabolism are emerging as primary candidates for drug discovery. Here, we report the cloning of ten cyclic nucleotide phosphodiesterase (PDE) genes of S. mansoni, out of a total of 11 identified in its genome. We classify these PDEs by homology to human PDEs. Male worms displayed higher expression levels for all PDEs, in mature and juvenile worms, and schistosomula. Several functional complementation approaches were used to characterise these genes. We constructed a Trypanosoma brucei cell line in which expression of a cAMP-degrading PDE complements the deletion of TbrPDEB1/B2. Inhibitor screens of these cells expressing only either SmPDE4A, TbrPDEB1 or TbrPDEB2, identified highly potent inhibitors of the S. mansoni enzyme that elevated the cellular cAMP concentration. We further expressed most of the cloned SmPDEs in two pde1Δ/pde2Δ strains of Saccharomyces cerevisiae and some also in a specialised strain of Schizosacharomyces pombe. Five PDEs, SmPDE1, SmPDE4A, SmPDE8, SmPDE9A and SmPDE11 successfully complemented the S. cerevisiae strains, and SmPDE7var also complemented to a lesser degree, in liquid culture. SmPDE4A, SmPDE8 and SmPDE11 were further assessed in S. pombe for hydrolysis of cAMP and cGMP; SmPDE11 displayed considerable preferrence for cGMP over cAMP. These results and tools enable the pursuit of a rigorous drug discovery program based on inhibitors of S. mansoni PDEs.


Assuntos
Clonagem Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Helminto/metabolismo , Diester Fosfórico Hidrolases/genética , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Animais , Linhagem Celular , Deleção de Genes , Perfilação da Expressão Gênica , Genoma Helmíntico , Proteínas de Helminto/genética , Masculino , Camundongos , Filogenia , Trypanosoma brucei brucei , Leveduras
19.
Virulence ; 11(1): 568-579, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32441549

RESUMO

Infection with intravascular platyhelminths of the genus Schistosoma can result in the debilitating disease schistosomiasis. Schistosomes (blood flukes) can survive in the host for many years. We hypothesize that proteins on their host-interactive surface modify the worm's external environment to help insure worm survival. Previously, we have shown that a surface ectoenzyme of Schistosoma mansoni, SmNPP5 - a nucleotide pyrophosphatase/phosphodiesterase - can cleave ADP and block platelet aggregation in vitro. In this work, we show that both adult schistosomes and recombinant SmNPP5 can cleave the exogenous purinergic signaling molecule nicotinamide adenine dinucleotide (NAD). In doing so, worms and rSmNPP5 can prevent NAD-induced apoptosis of T cells in vitro. Since regulatory T cells (Tregs) are especially prone to such NAD-induced cell death (NICD), we hypothesize that schistosome cleavage of NAD promotes Treg survival which creates a more immunologically hospitable environment for the worms in vivo. In addition to SmNPP5, schistosomes express another host-interactive NAD-degrading enzyme, SmNACE. We successfully suppressed the expression of SmNPP5 and SmNACE (singly or together) using RNAi. Only SmNPP5-suppressed worms, and not SmNACE-suppressed worms, were significantly impaired in their ability to cleave exogenous NAD compared to controls. Therefore, we contend that ectoenzyme SmNPP5 on the surface of the worm is primarily responsible for extracellular NAD cleavage and that this helps modulate the host immune environment by preventing Treg cell death.


Assuntos
Apoptose , Proteínas de Helminto/metabolismo , NAD/metabolismo , Schistosoma mansoni/enzimologia , Linfócitos T Reguladores/patologia , Animais , Feminino , Hidrólise , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia
20.
Methods Mol Biol ; 2151: 145-158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32452002

RESUMO

Schistosomiasis caused by parasitic blood flukes of the genus Schistosoma is a global health problem with over 200 million people infected. Schistosoma mansoni cathepsin B1 (SmCB1) is a gut-associated protease critical for digestion of host blood proteins as a source of nutrients. SmCB1 is a validated drug target, and inhibitors of SmCB1 represent promising anti-schistosomals. A comprehensive structural and functional characterization of SmCB1 provides a starting point for the rational design of selective and potent SmCB1 inhibitors. Here, we report optimized protocols for (1) the production of recombinant SmCB1 in the Pichia pastoris expression system and its purification, (2) the measurement of SmCB1 activity and inhibition in a kinetic fluorescence assay, and (3) the preparation and crystallization of SmCB1 in complex with a model vinyl sulfone inhibitor, and the determination of its crystal structure.


Assuntos
Catepsina B/química , Catepsina B/metabolismo , Schistosoma mansoni/enzimologia , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/isolamento & purificação , Cristalização , Eletroporação , Ativação Enzimática , Expressão Gênica , Vetores Genéticos/metabolismo , Glicosilação , Cinética , Mutação/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...